Extensions 1→N→G→Q→1 with N=C23 and Q=C2×C28

Direct product G=N×Q with N=C23 and Q=C2×C28
dρLabelID
C24×C28448C2^4xC28448,1385

Semidirect products G=N:Q with N=C23 and Q=C2×C28
extensionφ:Q→Aut NdρLabelID
C23⋊(C2×C28) = C2×C4×F8φ: C2×C28/C2×C4C7 ⊆ Aut C2356C2^3:(C2xC28)448,1362
C232(C2×C28) = C14×C23⋊C4φ: C2×C28/C14C4 ⊆ Aut C23112C2^3:2(C2xC28)448,817
C233(C2×C28) = C7×C23.23D4φ: C2×C28/C14C22 ⊆ Aut C23224C2^3:3(C2xC28)448,794
C234(C2×C28) = C7×C22.11C24φ: C2×C28/C14C22 ⊆ Aut C23112C2^3:4(C2xC28)448,1301
C235(C2×C28) = D4×C2×C28φ: C2×C28/C28C2 ⊆ Aut C23224C2^3:5(C2xC28)448,1298
C236(C2×C28) = C22⋊C4×C2×C14φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3:6(C2xC28)448,1295

Non-split extensions G=N.Q with N=C23 and Q=C2×C28
extensionφ:Q→Aut NdρLabelID
C23.1(C2×C28) = C7×C2≀C4φ: C2×C28/C14C4 ⊆ Aut C23564C2^3.1(C2xC28)448,155
C23.2(C2×C28) = C7×C23.D4φ: C2×C28/C14C4 ⊆ Aut C231124C2^3.2(C2xC28)448,156
C23.3(C2×C28) = C7×C23.C23φ: C2×C28/C14C4 ⊆ Aut C231124C2^3.3(C2xC28)448,818
C23.4(C2×C28) = C14×C4.D4φ: C2×C28/C14C4 ⊆ Aut C23112C2^3.4(C2xC28)448,819
C23.5(C2×C28) = C7×M4(2).8C22φ: C2×C28/C14C4 ⊆ Aut C231124C2^3.5(C2xC28)448,821
C23.6(C2×C28) = C7×C23.9D4φ: C2×C28/C14C22 ⊆ Aut C23112C2^3.6(C2xC28)448,146
C23.7(C2×C28) = C7×M4(2)⋊4C4φ: C2×C28/C14C22 ⊆ Aut C231124C2^3.7(C2xC28)448,148
C23.8(C2×C28) = C7×C24.C22φ: C2×C28/C14C22 ⊆ Aut C23224C2^3.8(C2xC28)448,796
C23.9(C2×C28) = C7×C24.3C22φ: C2×C28/C14C22 ⊆ Aut C23224C2^3.9(C2xC28)448,798
C23.10(C2×C28) = C7×(C22×C8)⋊C2φ: C2×C28/C14C22 ⊆ Aut C23224C2^3.10(C2xC28)448,816
C23.11(C2×C28) = C7×C42.7C22φ: C2×C28/C14C22 ⊆ Aut C23224C2^3.11(C2xC28)448,841
C23.12(C2×C28) = C7×C86D4φ: C2×C28/C14C22 ⊆ Aut C23224C2^3.12(C2xC28)448,844
C23.13(C2×C28) = C7×Q8○M4(2)φ: C2×C28/C14C22 ⊆ Aut C231124C2^3.13(C2xC28)448,1351
C23.14(C2×C28) = C22⋊C4×C28φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.14(C2xC28)448,785
C23.15(C2×C28) = C7×C23.8Q8φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.15(C2xC28)448,793
C23.16(C2×C28) = C7×C82M4(2)φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.16(C2xC28)448,813
C23.17(C2×C28) = C7×C42.6C22φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.17(C2xC28)448,832
C23.18(C2×C28) = D4×C56φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.18(C2xC28)448,842
C23.19(C2×C28) = C7×C89D4φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.19(C2xC28)448,843
C23.20(C2×C28) = C14×C8○D4φ: C2×C28/C28C2 ⊆ Aut C23224C2^3.20(C2xC28)448,1350
C23.21(C2×C28) = C7×C23⋊C8φ: C2×C28/C2×C14C2 ⊆ Aut C23112C2^3.21(C2xC28)448,127
C23.22(C2×C28) = C7×C22.M4(2)φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.22(C2xC28)448,128
C23.23(C2×C28) = C7×C22.C42φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.23(C2xC28)448,147
C23.24(C2×C28) = C7×C243C4φ: C2×C28/C2×C14C2 ⊆ Aut C23112C2^3.24(C2xC28)448,787
C23.25(C2×C28) = C7×C23.7Q8φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.25(C2xC28)448,788
C23.26(C2×C28) = C7×C23.34D4φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.26(C2xC28)448,789
C23.27(C2×C28) = M4(2)×C28φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.27(C2xC28)448,812
C23.28(C2×C28) = C14×C22⋊C8φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.28(C2xC28)448,814
C23.29(C2×C28) = C7×C24.4C4φ: C2×C28/C2×C14C2 ⊆ Aut C23112C2^3.29(C2xC28)448,815
C23.30(C2×C28) = C14×C4.10D4φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.30(C2xC28)448,820
C23.31(C2×C28) = C7×C4⋊M4(2)φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.31(C2xC28)448,831
C23.32(C2×C28) = C7×C42.12C4φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.32(C2xC28)448,839
C23.33(C2×C28) = C7×C42.6C4φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.33(C2xC28)448,840
C23.34(C2×C28) = C14×C42⋊C2φ: C2×C28/C2×C14C2 ⊆ Aut C23224C2^3.34(C2xC28)448,1297
C23.35(C2×C28) = C7×C22.7C42central extension (φ=1)448C2^3.35(C2xC28)448,140
C23.36(C2×C28) = C14×C2.C42central extension (φ=1)448C2^3.36(C2xC28)448,783
C23.37(C2×C28) = C14×C8⋊C4central extension (φ=1)448C2^3.37(C2xC28)448,811
C23.38(C2×C28) = C14×C4⋊C8central extension (φ=1)448C2^3.38(C2xC28)448,830
C23.39(C2×C28) = C4⋊C4×C2×C14central extension (φ=1)448C2^3.39(C2xC28)448,1296
C23.40(C2×C28) = M4(2)×C2×C14central extension (φ=1)224C2^3.40(C2xC28)448,1349

׿
×
𝔽